Sample Vessel Calculations

These calculation sheets are for educational purposes only. These calculation sheets are recommended for the following:

- Preliminary determination of wall thickness
- Preliminary material estimates
- Estimating volumes and weights

Not all ASME VIII-1 requirement are covered in the calculation sheets

Notes Regarding Sample Vessel Calculations:

- Nozzle N3 is not calculated due to its small size.
- Nozzle N2 uses a thin wall (SCH 5) to demonstrate the use of a repad.

PVE - 3247

17-Feb-09 Revision 0 Ben Vanderloo Pressure Vessel Engineering Ltd.

Finite Element Analysis – ASME Code Calculations Canadian Vessel Registration – Vessel Modeling and Drafting

Material Database ver E4.00 4

Material Properties: 5

1

2

3

6

400.0 Temp [°F] - maximum design temperature

		Ambient	Design		
Ma	terial	Strength	Strength	Max ⁰F	
SA-36	Plate	16,600	16,600	900	Carbon Steels
SA-106 B	Seamless Pipe	17,100	17,100	1,000	
SA-234 WPB	Fittings	17,100	17,100	1,000	
SA-105	Forging	20,000	20,000	1,000	
SA-516 70	Plate	20,000	20,000	1,000	
SA-414 G	Sheet	21,400	21,400	900	
SA-213 TP316L	Sms Tube	16,700	15,700	850	Stainless Steel 316
SA-240 316L	Plate	16,700	15,700	850	
SA-312 TP316L	Sms. and Wld. Pipe	16,700	15,700	850	
SA-403 316L	Sms and Weld Fittings	16,700	15,700	850	
SA-479 316L	Bar	16,700	15,700	850	
SA-213 TP316	Sms Tube	20,000	19,300	1,500	Stainless Steel 316
SA-240 316	Plate	20,000	19,300	1,500	
SA-312 TP316	Sms. and Wld. Pipe	20,000	19,300	1,500	
SA-403 316	Sms and Weld Fittings	20,000	19,300	1,500	
SA-479 316	Bar	20,000	19,300	1,500	
SA-213 TP304L	Sms Tube	16,700	15,800	1,200	Stainless Steel 304
SA-240 304L	Plate	16,700	15,800	1,200	
SA-312 TP304L	Sms. and Wld. Pipe	16,700	15,800	1,200	
SA-403 304L	Sms and Weld Fittings	16,700	15,800	1,200	
SA-479 304L	Bar	16,700	15,800	1,200	
SA-213 TP304	Sms Tube	20,000	13,800	1,500	Stainless Steel 30
SA-240 304	Plate	20,000	13,800	1,500	
SA-312 TP304	Sms. and Wld. Pipe	20,000	18,300	1,500	
SA-403 304	Sms and Weld Fittings	20,000	18,300	1,500	
SA-479 304	Bar	20,000	18,300	1,500	
SB-209 6061-T6 plate ().051-0.249", wld	6,000	3,500	400	Aluminum
SB-209 6061-T651 plat	e 0.25-5", wld	6,000	3,500	400	
SB-209 6061-T6 plate (0.051-0.249"	10,900	4,000	400	
SB-209 6061-T651 plat	e 0.25-4.0"	10,900	4,000	400	
SB-209 6061-T651 plat	e 4.0-5.0"	10,300	4,000	400	
SB-211 A96061-T6 bar	0.125-0.249", wld	6,000	3,500	400	
SB-234 A96061-T6 tub	es 0.025-0.200", wld	6,000	3,500	400	
SB-241 A96061-T6 sm	s. Pipe, wld	6,000	3,500	400	
SB-247 A96061-T6 for		6,000	3,500	400	
SB-308 A96061-T6 sha		6,000	3,200	400	

Material properties are compliant with ASME Section IID Table 1A 44

Fluid Properties: 46

- **200.0** P [psi] pressure at top of vessel 47
- **3.31** h [ft] fluid height 48 1.000 SG - fluid specific gravity
- 49

Pdesign [psi] = P+0.433*SG*hdesign pressure including static head 50

200+0.433*1*3.31 = 201.4

Pdesign is to be used in the design of subsequent components (shell, head, nozzle, etc) 51

This sheet is for educational use only - use at your own risk. 52

45

- Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6
 - www.pveng.com (519) 880-9808

Page 1 of 8

2 3 4	Pressure Vessel Engineering Ltd. Finite Element Analysis – ASME Code Calculations Canadian Vessel Registration – Vessel Modeling and Drafting
6	Pipe and Shell Design Tool ver E4.00 Page 2 of 8
7	18" Shell Description
8 9 10 11	Dimensions: 18.000 Do [in] - outside diameter 0.250 t [in] - nominal wall thickness 24.000 L [in] -length
12 13 14 15 16	0.010 Corr [in] - corrosion allowance Material and Conditions: SA-516 70 Material 20,000 S [psi] - allowable stress 0.70 EI - long seam efficiency (circ stress)
17 18 19	0.85 Ec - circ seam efficiency (long stress) 0.0% UTP [%] - undertolerance allowance 201.4 P [psi] - interior pressure
20 21 22	Calculated Properties:Volume $[cuft] = ((Do/2-t)^2)^*pi()^*L/1728$ $((18/2-0.25)^2)^*PI()^*24/1728 =$ Weight $[lb] = (Do-t)^*pi()^*L^*t^*40.84/144$ $(18-0.25)^*PI()^*24^*0.25^*40.84/144 =$ Veriation:
23 24 25 26	Variables: $0.25^*0 = 0.000$ nt [in] = t-Corr-UT $0.25 \cdot 0.01 \cdot 0 = 0.240$ Ri [in] = Do/2-nt $18/2 \cdot 0.24 = 8.760$
27 28 29 30 31	$\begin{array}{llllllllllllllllllllllllllllllllllll$
32 33 34 35 36	$\begin{array}{llllllllllllllllllllllllllllllllllll$
37 38 39 40 41 42	Treq provides a worst case required thickness for nozzle analysis for a nozzle located on the long seam or circ seam This sheet will not calculate thick walled vessels The UG-16(b) minimum thickness requirement has not been taken into consideration here. This sheet cannot be used to check for allowable exterior pressure loads. Use the Weld Efficiency program to calculate EI and Ec This sheet is for educational use only - use at your own risk.
43 44 45 46	Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6 www.pveng.com (519) 880-9808

2 3 4	Pressure Vessel Engineering Ltd. Finite Element Analysis – ASME Code Calculations Canadian Vessel Registration – Vessel Modeling and Drafting
6 7	Elliptical Head Design Tool ver E4.00 Page 3 of 8 Elliptical Head Description
8 9 10 11 12	Dimensions: 18.000 Do [in] - outside diameter of head 0.250 tb [in] - thickness before forming 0.188 tf [in] - thickness after forming (note 1) 0.010 Corr [in] - corrosion allowance
13 14 15 16 17 18	2.000 Skirt [in] - straight skirt length Material and Conditions: Sperical Limit SA-516 70 Material 20,000 S [psi] - allowable stress 0.85 E - head longitudinal efficiency 201.4 P [psi] - interior pressure
19 20 21	Calculated Properties: note 1: Suggested thickness after forming 0.1875 in Approx. head weight based on steel, lbs = 35.28 Approx. head volume including skirt, cuft = 0.70
22 23 24 25 26 27 28 29	Variables: nt [in] = tf-Corr thickness with corrosion allowance removed $0.188-0.01 = 0.178$ D [in] = Do-2*nt ID with corrosion allowance removed $18-2*0.178 = 17.645$ h [in] = D/4 inside crown height $17.645/4 = 4.411$ ho [in] = h+nt $4.411+0.178 = 4.589$ D/2h = D/(2*h) $17.645/(2*4.411) = 2.000$ Do/2ho = Do/(2*ho) $18/(2*4.589) = 1.961$ Ro [in] = Kzero*Do $0.883*18 = 15.887$
30 31 32 33	Required Thickness: App. 1-4(c), UG-37(a)(1) App1-4(f) = tf/(Kone*D) 0.188/(0.9*17.645) = 0.0118 App1-4(f)Calc = if(AND(0.0005= <app1-4(f),app1-4(f)<0.002),"calculation not="" required")<="" required","calculation="" td=""> App. 1-4(f) Calculation Not Required</app1-4(f),app1-4(f)<0.002),"calculation>
34 35 36	$\label{eq:treq_in} \begin{split} \mbox{Treq}_{[in]} &= (P^*D^*K)/(2^*S^*E-0.2^*P) + \mbox{Corr} & \mbox{required minimum thickness} \\ &(201.4^*17.645^*1)/(2^*20000^*0.85-0.2^*201.4) + 0.01 = \hline 0.115 \\ \mbox{CheckTreq} &= \mbox{Treq} <= \mbox{tf} & 0.115 <= 0.188 = \mbox{Acceptable} \end{split}$
37 38 39	Maximum Pressure: App. 1-4(c), UG-37(a)(1) Pmax [psi] = $(2^*S^*E^*nt)/(K^*D+0.2^*nt)$ maximum allowed design pressure (2*20000*0.85*0.178)/(1*17.645+0.2*0.178) = 341.3 CheckPMax = Pmax >= P 341.3 >= 201.4 = Acceptable
40 41 42 43 44 45 46 47 48	App. 1-4(f) calculation is not included on this sheet The UG-16(b) minimum thickness requirement has not been taken into consideration here. Nozzles may be subject to a smaller required thickness depending on location in the head. Only the knuckle required thickness is calculated on this sheet Heads may be subject to stress relief if large elongation occurs - UCS-79(d), UNF-79(d), UHA-44(d) Use the Weld Efficiency program to calculate E This sheet cannot be used to check for allowable exterior pressure loads. This sheet is for educational use only - use at your own risk.
49 50 51 52	Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6 www.pveng.com (519) 880-9808

2 3	Pressure Vessel Engineering Ltd. Finite Element Analysis – ASME Code Calculations
4	Canadian Vessel Registration – Vessel Modeling and Drafting
6	F&D Head Design Tool ver E4.00 Page 4 of 8
7	F&D Head Description
	Dimensions:
8 9	18.000 Do [in] - outside diameter of head Inner Radius (L)
10	18.000 L [in] - inside crown radius (note 1) → Spherical Limit /
11	1.080 IKR [in] - inside knuckle radius (note 2)
12	0.250 tb [in] - thickness before forming 0.218 tf [in] - thickness after forming (note 3)
13 14	0.010 Corr [in] - corrosion allowance
15	1.500 Skirt [in] - straight skirt length
16	Material and Conditions:
17	SA-516 70 Material
18	20,000 S [psi] - allowable stress
19	0.85 E - head longitudinal efficiency
20	201.4 P [psi] - interior pressure
21 22	Calculated Properties: note 1:Suggested radius L per UG-32(j) 18.00 Approx. head weight based on steel, lbs = 28.71
22 23	note 2:Suggested radius IKR per UG-32(j) 1.080 Approx. head volume including skirt, cuft = 0.46
24	note 3:Suggested thickness after forming 0.2180
25	Variables:
26	nt [in] = tf-Corr thickness with corrosion allowance removed 0.218-0.01 = 0.208
27 28	D [in] = Do-2*nt ID with corrosion allowance removed 18-2*0.208 = 17.584 L/r = L/IKR 18/1.08 = 16.667
29	$\mathbf{M} = 0.25^{*}(3 + \text{sqrt}(\text{L/IKR})) \qquad 0.25^{*}(3 + \text{SQRT}(18/1.08)) = 1.771$
30	Ro [in] = L+tb 18+0.25 = 18.250
31	Required Thickness: App. 1-4(a), App. 1-4(d)
32	App1-4(f) = tf/L 0.218/18 = 0.012
33	App1-4(f)Calc = if(AND(0.0005= <app1-4(f),app1-4(f)<0.002),"calculation not="" required")<br="" required","calculation="">App. 1-4(f) Calculation Not Required</app1-4(f),app1-4(f)<0.002),"calculation>
34 35	Treq [in] = (P*L*M)/(2*S*E-0.2*P)+Corr required minimum thickness
36	(201.4*18*1.771)/(2*20000*0.85-0.2*201.4)+0.01 = 0.199
37	CheckTreq = Treq<=tf
38	Maximum Pressure: App. 1-4(a), App. 1-4(d)
39	Pmax $_{[psi]} = (2*S*E*nt)/(L*M+0.2*nt)$ maximum allowed design pressure
40 41	(2*20000*0.85*0.208)/(18*1.771+0.2*0.208) = 221.6 CheckPMax = Pmax >= P 221.6 >= 201.4 = Acceptable
42	App. 1-4(f) calculation is not included on this sheet
43	Nozzles may be subject to a smaller required thickness depending on location in the head.
44 45	Only the knuckle required thickness is calculated on this sheet Heads may be subject to stress relief if large elongation occurs - UCS-79(d), UNF-79(d), UG-37(a)(1)
45 46	The UG-16(b) minimum thickness requirement has not been taken into consideration here.
47	This sheet cannot be used to check for allowable exterior pressure loads.
48 49	Use the Weld Efficiency program to calculate E This sheet is for educational use only - use at your own risk.
50 51	Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B
51 52	Waterloo, Ontario, Canada, N2V 1C6
53	www.pveng.com (519) 880-9808

2	Pressure Vessel Engineering Ltd.				
3 4	Finite Element Analysis – ASME Code Calculations Canadian Vessel Registration – Vessel Modeling and Drafting				
6	Nozzle Design Tool ver E4.00 Page 5 of 8				
7	N1 - 4" SCH ? Description				
8	Shell Inputs:				
9	SA-516 70 Material				
10	20,000 Sv [psi] - allowable stress				
11	1.00 E1 - efficiency of shell at nozzle				
12	17.500 Ds [m] - inside diameter of shell				
13 14	0.250 nt [in] - nominal shell wall thickness 0.137 Treq [in] - required shell wall thickness				
15	0.010 sca [in] - head or shell corrosion allowance				
16					
17	SA-106 B Material				
18	17,100 Sn [psi] - allowable stress				
19	1.00 E - nozzle efficiency				
20	4.500 Do [in] - outside diameter of nozzle				
21	0.237 Nwall [in] - nominal wall thickness of nozzle UW-16.1 (c) modified				
22	6.000 Lp [in] - exterior projection of nozzle 3.750 Ip [in] - interior projection of nozzle				
23 24	0.010 nca [in] - nozzle corrosion allowance				
25	12.5% UTP [%] - undertolerance allowance				
26	201.4 Pn [psi] - interior pressure				
27	0.125 Leg41 (in) - fillet size				
28	0.125 Leg43 [in] - fillet size				
29	Variables: UT [in] = Nwall*UTP 0.237*0.1 = 0.030				
30 31	$\mathbf{Rn} \text{ [in]} = \mathbf{Do}/2 - (\mathbf{Nwall-nca}) + \mathbf{UT} \qquad 4.5/2 - (0.237 - 0.01) + 0.03 = 2.053$				
32	tn [in] = Nwall-nca $0.237-0.01 = 0.227$				
33	ti [in] = Nwall-2*nca 0.237-2*0.01 = 0.217				
34	$d_{[in]} = Do-2^* tn$ $4.5-2^* 0.227 = 4.046$				
35	$h_{[in]} = MIN(Ip-sca,2.5*nt,2.5*ti) MIN(3.75-0.01,2.5*0.25,2.5*0.217) = 0.543$				
36 37	fr1 = MIN(Sn/Sv,1) $MIN(17100/20000,1) =$ 0.855 $fr2 = MIN(Sn/Sv,1)$ $MIN(17100/20000,1) =$ 0.855				
38	Required Thickness: UG-27(c)(1,2)				
38 39	TreqN [in] = (Pn*Rn)/(Sn*E - 0.6*Pn)+nca required minimum thickness				
40	$(201.4^{*}2.053)/(17100^{*}1 - 0.6^{*}201.4) + 0.01 = 0.034$				
41	CheckTreqN = TreqN <= Nwall 0.034 <= 0.237 = Acceptable				
42	Minimum thickness per UG-45 [in] = Acceptable 0.147				
43	Area Replacement:				
44	Ar [in/2] = 1*d*Treq*1+2*tn*Treq*1*(1-fr1) required Area				
45	$1^{4}.046^{\circ}0.137^{*}1+2^{\circ}0.227^{\circ}0.137^{*}1^{*}(1-0.855) = 0.564$				
46 47	A1 [in^2] = max(d, 2*(nt+tn))*(E1*nt-1*Treq)-2*tn*(E1*nt-1*Treq)*(1-fr1) MAX(4.046, 2*(0.25+0.227))*(1*0.25-1*0.137)-2*0.227*(1*0.25-1*0.137)*(1-0.855) = 0.449				
47 48	$\mathbf{A2}_{[in^{2}]} = \min((\text{tn-trnR})^{*}\text{fr}2^{*}\text{Min}(5^{*}\text{nt},2^{*}\text{Lp}), (\text{tn-trnR})^{*}\text{fr}2^{*}\text{Min}(5^{*}\text{tn},2^{*}\text{Lp}))$				
49	$MIN((0.227-0.024)^*0.855^*MIN(5^*0.25,2^*6), (0.227-0.024)^*0.855^*MIN(5^*0.227,2^*6)) = 0.197$				
50	A3 [in^2] = Min(5*nt*ti*fr2,5*ti*ti*fr2,2*h*ti*fr2)				
51	$MIN(5^{*}0.25^{*}0.217^{*}0.855, 5^{*}0.217^{*}0.217^{*}0.855, 2^{*}0.543^{*}0.217^{*}0.855) = 0.201$				

Nozzle Design Tool ver E4.00

0.125²*0.855 = **0.013**

0.872 >= 0.564 = Acceptable

(0.125-0.01)²*0.855 = **0.011**

0.449+0.197+0.201+0.013+0.011 = 0.872

- 1 **A41** $[in^2] = Leg41^2*fr2$
- 2 **A43** [in^2] = (Leg43-nca)^2*fr2
- 3 **Aa** [in^2] = A1+A2+A3+A41+A43 actual area
- 4 **CheckA** = Aa >= Ar check area replacement

5 The UG-16(b) minimum thickness requirement has not been taken into consideration here.

- 6 The required weld size is not checked on this sheet
- 7 This sheet cannot be used to check for allowable exterior pressure loads.
- 8 This sheet is for educational use only use at your own risk.

9	Pressure Vessel Engineering Ltd.
10	120 Randall Drive, Suite B
11	Waterloo, Ontario, Canada, N2V 1C6
12	<u>www.pveng.com (519) 880-9808</u>

She	ell Inputs: SA-516 70 20,000 1.00 17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	Material Sv [psi] - allowable stress E1 - efficiency of shell at nozz Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowa	Description zle ell kness hickness	Page 7 of 8
	SA-516 70 20,000 1.00 17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	Material Sv [psi] - allowable stress E1 - efficiency of shell at nozz Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowa	zle ell kness hickness	Nwall te Leg41 Ring te Leg42
	SA-516 70 20,000 1.00 17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	Sv [psi] - allowable stress E1 - efficiency of shell at nozz Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowa	ell kness hickness	Nwall te Leg41 Ring te Leg42
Noz	20,000 1.00 17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	Sv [psi] - allowable stress E1 - efficiency of shell at nozz Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowa	ell kness hickness	Nwall te Leg41 Ring te Leg42
Noz	1.00 17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	E1 - efficiency of shell at nozz Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowar Material	ell kness hickness	Nwall te Leg41 Ring te Leg42
Noz	17.500 0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	Ds [in] - inside diameter of she nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowar Material	ell kness hickness	Nwall te Leg41 Ring te Leg42
Noz	0.250 0.137 0.010 zzle Inputs: SA-106 B 17,100	nt [in] - nominal shell wall thick Treq [in] - required shell wall th sca [in] - shell corrosion allowa Material	kness hickness	PROVIDENT Contraction of the con
Noz	0.137 0.010 zzle Inputs: SA-106 B 17,100	Treq [in] - required shell wall the sca [in] - shell corrosion alloware Material	hickness	Ring te Leg42
Noz	0.010 zzle Inputs: SA-106 B 17,100	sca [in] - shell corrosion allowa		Ring te Leg42
Noz	zzle Inputs: SA-106 B 17,100	Material	ance	a bet
Noz	SA-106 B 17,100			ا Shell nt
	17,100			onen -
	,	SII [psi] - allowable stress		Leg43 Proj
		E - nozzle efficiency		
	0 605	Do [in] - outside diameter of no	07710	Leg43
		Nwall [in] - nominal wall thickn		UW-16.1 (s)
		Lp [in] - exterior projection of r		i deg and development to the
		Ip [in] - interior projection of no		
		nca [in] - nozzle corrosion allo		
		UTP [%] - undertolerance allow	vance	
	201.4	Pn [psi] - interior pressure		
Rei	inforcement:			
	SA-516 70			
		Sp [psi] - allowable stress of re	pad	
		te [in] - repad thickness		
		Dp [in] - outside diameter Leg41 [in] - fillet size		
		Leg42 [in] - fillet size		
		Leg43 [in] - fillet size		
	0.250	LegG [in] - depth of groove		
Var	riables:			
		Nwall*UTP	_	0.109*0.1 = 0.014
		Do/2 - (Nwall-nca) + UT	8.625	5/2 - (0.109 - 0.01) + 0.014 = 4.227
		Nwall-2*nca MIN(Ip-sca,2.5*nt,2.5*ti)	MIN(O	$0.109 \cdot 2^{\circ} 0.01 = 0.089$ $-0.01, 2.5^{\circ} 0.25, 2.5^{\circ} 0.089) = -0.010$
		Nwall-nca	IVIIIN(U-	(0.01, 2.5, 0.25, 2.5, 0.089) = -0.010 (0.109 - 0.01 = 0.099)
		Do-2*tn		8.625-2*0.099 = 8.427
Req	quired Thickne	SS: UG-27(c)(1,2)		
		(Pn*Rn)/(Sn*E - 0.6*Pn)+nca	required minimum t	thickness 7100*1 - 0.6*201.4)+0.01 = 0.060

47

Minimum thickness per UG-45 [in] = Acceptable 0.147

1	Area Replacement:			
2	Ar [in^2] = 1*d*Treq*1+2*tn*Treq*1*(1-fr1) required Area			
3	1*8.427*0.137*1+2*0.099*0.137*1*(1-0.855) = 1.160			
4	A1 [in/2] = max(d, 2*(nt+tn)) * (E1*nt-1*Treq)-2*tn*(E1*nt-1*Treq)*(1-fr1)			
5	MAX(8.427, 2*(0.25+0.099)) * (1*0.25-1*0.137)-2*0.099*(1*0.25-1*0.137)*(1-0.855) = 0.948			
6	A2 [in/2] = min((tn-trnR)*fr2*min(5*nt,2*Lp),(tn-trnR)*(Min(2.5*tn+te,2*Lp)*fr2*2))			
7	MIN((0.099-0.05)*0.855*MIN(5*0.25,2*2),(0.099-0.05)*(MIN	N(2.5*0.099+0.25,2*2)*0.855*2)) = 0.042		
8	A3 [in/2] = Min(5*nt*ti*fr2,5*ti*ti*fr2,2*h*ti*fr2)			
9	MIN(5*0.25*0.089*0.855,5*0.089*0.	089*0.855,2*-0.01*0.089*0.855) = -0.002		
10	A5 [in^2] = (Dp-d-2*tn)*te*fr4	(11-8.427-2*0.099)*0.25*1 = 0.594		
11	A41 [in^2] = Leg41^2*fr3	0.25 ² *0.855 = 0.053		
12	A42 [in^2] = Leg42^2*fr4	0.25 ² *1 = 0.063		
13	A43 [in/2] = (Leg43-nca)/2*fr2	(0.25-0.01) ² *0.855 = 0.049		
14	Aa [in/2] = A1+A2+A3+A5+A41+A42+A43 actual area			
15		.002+0.594+0.053+0.063+0.049 = 1.747		
16	CheckA = Aa >= Ar check area replacement	1.747 >= 1.16 = Acceptable		
17	The UG-16(b) minimum thickness requirement is not checked.			
18	The required weld size is not checked on this sheet			
19	This sheet cannot be used to check for allowable exterior pressure loads.			
20	This sheet is for educational use only - use at your own risk.			
21	Pressure Vessel Engir	-		

21	Pressure Vessel Engineering Ltd.
22	120 Randall Drive, Suite B
23	Waterloo, Ontario, Canada, N2V 1C6
24	<u>www.pveng.com (519) 880-9808</u>

Pressure Vessel Engineering Ltd. Finite Element Analysis – ASME Code Calculations Canadian Vessel Registration – Vessel Modeling and Drafting

Vessel We	Id Efficiency ver 2.00	ASME VIII-1 Section UW-11 & UG-116(e)		
	Web Example			
Left Head: [Category A] - long seam weld in head, not head to shell weld				
Semi-Elliptical		UW12 Column for this weld a		
	Left head weld type	UW12 Column for joining circ weld c		
Seamless	Left head weld radiography	Weld Type Number 0		
UW-11(a) is met		Isolated long seam efficiency 1.00		
		Allowed UW12 Column b		
UW-11(a)(5)(b) is NO	T met	Allowed Head Longitudinal Efficiency 0.85		
Left Circ Weld: [Category A, B, C or D] head to shell weld			
	Left head to body circ-weld type	UW12 Column for this weld c		
None	Left head to body circ-weld radiography	Circ seam type number 1		
		Left circ weld efficiency 0.70		
Body Long Sean	n: [Category A]			
	Body long weld type	UW12 column for the body long seam c		
None	Body long-weld radiography	UW12 column for left circ weld c		
UW-11(a) is NOT		UW12 column for right circ weld c		
		Long seam type number 1		
UW-11(a)(5)(b) is NO	T met left circ efficiency 0.7	Isolated long seam efficiency 0.70		
	right circ efficiency 0.7	Allowed UW12 Column c		
	Allowed Circ Efficiency 0.70	Allowed Long Seam Efficiency 0.70		
Right Circ Weld:	[Category A, B, C or D] head to shell weld			
	Right head to body circ-weld type	UW12 Column c		
	Right head to body circ-weld radiography	Circ seam type number 1		
		Right circ weld efficiency 0.70		
Right Head: [Car	tegory A] - long seam weld in head, not head t	to shell weld		
	Right head	UW12 Column for this weld a		
	Right head weld type	UW12 Column for joining circ weld c		
	Right head weld radiography	Weld Type Number 0		
UW-11(a) is met		Isolated long seam efficiency 1.00		
		Allowed UW12 Column b		
UW-11(a)(5)(b) is NO	T met	Allowed Head Longitudinal Efficiency 0.85		
Notes:		Sketch:		
Left head efficiency is	reduced by left circ-weld efficiency			
Right head efficiency	is reduced by right head to body weld	l		
Comments: This sheet is for educa This program will not y	ational use only. Only ASME can make code interpretations. work for ERW pipe.			
Pressure Vessel Engineering Ltd. 120 Randall Drive, Suite B Waterloo, Ontario, Canada, N2V 1C6 www.pveng.com (519) 880-9808				